INTRODUCTION

The Polygon pattern illuminators are Mightex's market-leading modules for targeted photostimulation. The Polygon provides precise spatio-temporal control of light with subcellular resolution, making it the perfect illumination tool for scientific research. Compatible with any upright or inverted microscope, the Polygon enables researchers to send light to anywhere on their specimen, and in any shape, size and complexity now within a large projection field-of-view. In addition, multiple regions-of-interest (ROIs) can be illuminated simultaneously, and patterns can be switched at kHz speeds. Different wavelengths of light can be used with the Polygon for virtual simultaneous multi-color illumination of unique ROIs. Polygon systems seamlessly integrate via TTL with other equipment such as electrophysiology tools or cameras.

DMD TECHNOLOGY

The Polygon uses digital mirror device (DMD) technology to illuminate multiple ROIs simultaneously. A DMD chip is composed of up to millions of micromirrors that can be individually turned ON/OFF to reflect light onto the sample. Thus, you can assign each mirror to control the area(s) of illumination and create any number of different-sized ROIs simultaneously.

FEATURES

- Illuminate any Shape or Size Within Large Field-of-View
- Multi-Wavelength Illumination of Distinct ROIs
- Simultaneous Multi-Region Illumination
- Fast Pattern Switching Speed
- Fits on any Microscope
- External Equipment Synchronization

APPLICATIONS

- Neuroscience: Single-cell Resolution Optogenetics
- Cell Biology: Subcellular Resolution Optogenetics
- Freely-Behaving Optogenetics
- Cortex-Wide Optogenetics
- Photoactivation, Photoconversion & Photoswitching
- Uncaging
- Photopatterning

Figure 1. DMD-based patterned illumination.
INTRODUCING THE NEW

POLYGON1000

MORE PIXELS, FASTER SPEED

SAME VERSATILITY

1. **Larger field-of-view.**
 Finer resolution.
 New, larger DMD chip combined with interchangeable front tube optics enables larger field-of-view without compromising resolution and power.

2. **Faster than anything else in the market.**
 Increased maximum frame rate means better temporal resolution for advanced physiologically-relevant experiments and virtually simultaneous 2-color illumination of distinct ROIs.

 - **1000 Series**
 - 6,600 fps
 - **400 Series**
 - 4,000 fps

3. **Real-time projection.**
 Closed-loop experiments.
 Faster uploading time enables the Polygon1000 to perform real-time pattern illumination for closed-loop experiments (faster than HDMI refresh rates [60Hz/120Hz]).

 - Up to 4ms* uploading speed per frame
 *USB3.0 version. USB2.0 reaches up to 7ms uploading speed per frame.

4. **More power. Extra flexibility.**
 Larger chip and improved optics enhance transmission efficiency enabling the Polygon1000 to achieve increased power density at the specimen level, and giving the researcher more room for intensity control.

 - 45% increase in optical power density* at the specimen level
 *Comparison between Polygon400-G model and Polygon1000-G.
POLYGON MODELS

400 SERIES

POLYGON400-G

- Accepts a 3mm-core liquid lightguide.
- Can be used with any light source.
- Wavelength range: 350-700nm.

1000 SERIES

POLYGON1000-G

- Accepts a 3mm-core liquid lightguide.
- Can be used with any light source.
- Wavelength range: 350-700nm.
- Interchangeable front tubes available for fine resolution or large field-of-view.

POLYGON1000-DL

- Accepts SMA-connectorized optical fiber patch cord (400μm, 0.22NA recommended).
- Compatible with laser sources.
- Wavelength range: 400-700nm.
- Interchangeable front tubes available for fine resolution or large field-of-view.

Fine resolution without compromising field-of-view
Large field-of-view without compromising resolution*
* 2X front tube sold separately.
MICROSCOPE INTEGRATION

The Polygon can be coupled to most commercially available inverted and upright microscopes (Nikon, Leica, Zeiss, Olympus) in the following configurations:

INFINITY PATH CONFIGURATION

This configuration projects the spatial patterns at infinity, and hence it is mounted directly into the infinity path of a microscope by using a beam-combiner (for upright microscopes) along with an adaptor that matches the exact make/model of the microscope.

UPRIGHT

An adaptor is inserted in between the trinocular head and epi-illuminator of upright microscopes. *

INVERTED

Polygon replaces the epi-illuminator at the back of inverted microscopes.*

*Microscope adaptors sold separately.

MPI MULTI-PORT ILLUMINATOR

Mightex’s MPI is designed for simultaneous mounting of a Polygon and a lightguide-coupled light source for epifluorescence widefield illumination. The mirror cube holds any standard sized microscopy dichroic, which can be easily replaced. If you use an inverted microscope where the back port is already occupied by a traditional epi-fluorescent illuminator, with an MPI you can keep the fluorescence imaging capability.

HOW IT WORKS

EXAMPLE CONFIGURATION

C-MOUNT CONFIGURATION

If the infinity path of your microscope is unavailable, this configuration can be mounted onto one of the standard C-mount camera ports of your microscope.

LAPP CONFIGURATION

Do you have a Nikon microscope with a LAPP modular illumination system? We provide a Polygon format that is LAPP compatible. Please contact Mightex for more information.

PLEASE CONTACT MIGHTEX FOR INTEGRATION OF MULTIPLE POLYGONS AND ALTERNATIVE MICROSCOPE INTEGRATION SOLUTIONS.
TECHNICAL SPECIFICATIONS

ILLUMINATION FIELD-OF-VIEW & RESOLUTION

<table>
<thead>
<tr>
<th>Model</th>
<th>Front Tube</th>
<th>Projection Area</th>
<th>Commercial Microscope (1X Objective)</th>
<th>Leica</th>
<th>Nikon</th>
<th>Olympus</th>
<th>Zeiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 SERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYGON400-G</td>
<td>Standard</td>
<td></td>
<td></td>
<td>8.7</td>
<td>8.7</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>15.5</td>
<td>13.9</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.7</td>
<td>17.7</td>
<td>16.0</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.0</td>
<td>18.0</td>
<td>16.2</td>
<td>14.8</td>
</tr>
<tr>
<td>1000 SERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYGON1000-G</td>
<td>1X Tube (Standard)</td>
<td></td>
<td></td>
<td>6.2</td>
<td>6.2</td>
<td>5.5</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>2X Tubec</td>
<td></td>
<td></td>
<td>9.9</td>
<td>9.9</td>
<td>8.9</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>1X Tube (Standard)</td>
<td></td>
<td></td>
<td>11.6</td>
<td>11.6</td>
<td>10.5</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>2X Tubec</td>
<td></td>
<td></td>
<td>7.6</td>
<td>7.6</td>
<td>6.9</td>
<td>6.3</td>
</tr>
<tr>
<td>POLYGON1000-DL</td>
<td>1X Tube (Standard)</td>
<td></td>
<td></td>
<td>12.4</td>
<td>12.4</td>
<td>11</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>2X Tubec</td>
<td></td>
<td></td>
<td>19.8</td>
<td>19.8</td>
<td>17.8</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.2</td>
<td>23.2</td>
<td>21</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.2</td>
<td>15.2</td>
<td>13.8</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
<td>5.2</td>
<td>5.5</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
<td>7.6</td>
<td>6.9</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.2</td>
<td>15.2</td>
<td>13.8</td>
<td>12.6</td>
</tr>
</tbody>
</table>

*To calculate illumination field-of-view and pixel resolution at the specimen, simply divide the above numbers by the magnification of the objective.

c 2X front tube lens sold separately.

CONTROL & TIMING

<table>
<thead>
<tr>
<th></th>
<th>400 SERIES</th>
<th>1000 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Frame Ratea</td>
<td>4,000</td>
<td>6,600</td>
</tr>
<tr>
<td>Input Trigger</td>
<td>TTL, BNC connector</td>
<td></td>
</tr>
<tr>
<td>Input Trigger Delay</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Output Trigger</td>
<td>TTL, BNC connector</td>
<td></td>
</tr>
<tr>
<td>Output Trigger Delay</td>
<td>User Programmable</td>
<td></td>
</tr>
<tr>
<td>Input Uploading Speed</td>
<td>150b</td>
<td>Up to 4c</td>
</tr>
</tbody>
</table>

* Values at 1bit depth. For grayscale features please contact Mightex for more information.

b HDMI connection upgrade available.

c USB3.0 version. Actual achievable speed is dependent on PC hardware performance.
ORDER NOW

Our primary goal is to help you find the optimal solution for your research. We have a dedicated technical support and sales team committed to providing expert guidance on our Polygon models and other Mightex products.

Please visit www.mightexbio.com/contact to submit an inquiry form today!

CONTACT US

US OFFICE
1241 Quarry Lane, Suite 105
Pleasanton, CA 94566
USA
TEL: 1-925-218-1885

CANADA OFFICE
111 Railside Road, Suite 201
Toronto, ON M3A 1B2
Canada
TEL: 1-416-840-4991

www.mightexbio.com